November	18.	2022

Name	(Please	Print)
Name	LI TEASE	1 1 11116 /

C-12 Probability Theory- Final Exam - Semester I 22/23

Page 1 of 7.

Your	Signature	

Instructions:

- 1. For writing your answers use both sides of the paper in the answer booklet.
- 2. Please write your name on every page of this booklet and every additional sheet taken.
- 3. If you are using a Theorem/Result from class please state and verify the hypotheses of the same.
- 4. Maximum time is 2 hours and Maximum Possible Score is 100.

\mathbf{Score}

Q.No.	Alloted Score	Score
1.	17	
2.	17	
3.	17	
4.	17	
5.	17	
6.	17	
Total	102	

1. Let $\{Y_n\}_{n\geq 1}$ be a sequence of bounded random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Show that

$$\bar{Y} = \limsup_{n \to \infty} Y_n$$

is measurable.

2. Let $\{X_n\}_{n\geq 1}$ be independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose $X_n \sim \text{Poisson}(1)$ then show that

$$\mathbb{P}(\limsup_{n \to \infty} X_n \frac{\log \log(n)}{\log(n)} = 1) = 1.$$

- 3. Let $\{X_n\}_{n\geq 1}$ be non-negative i.i.d. random variables.
 - (a) Suppose $\lim_{n\to\infty} \frac{X_1+X_2+\ldots+X_n}{n} = c \in \mathbb{R}$ a.s. then is c=E[X]?
 - (b) Suppose $E[X] = \infty$ then can $\limsup_{n \to \infty} \frac{X_1 + X_2 + ... + X_n}{n} \in \mathbb{R}$ with positive probability?

4. Let Z_n be i.i.d random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$\mathbb{P}(Z_n = 1) = \frac{1}{2} = 1 - \mathbb{P}(Z_n = -1).$$

Define $X_n = \frac{Z_n}{n^{\theta}}$ for $0 < \theta$. Decide whether the series with partial sums $S_n = \sum_{j=1}^n X_n$ converges almost surely or not ?

5. Let \mathbb{P} , $\{\mathbb{P}_n\}_{n\geq 1}$ be Probability measures on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Suppose that for every subsequence \mathbb{P}_{n_k} there is a further subsequence $\mathbb{P}_{n_{k_l}}$ that converges weakly to \mathbb{P} . Show that \mathbb{P}_n converge weakly to \mathbb{P} .

Page 7 of 7.

6. Let $\{A_n\}_{n\geq 1}$ be a sequence of pairwise independent events. Fix $n\geq 1$ and let $X_m=\sum_{i=n}^m 1_{A_i}$ for m>n.

- (a) Show that $P(X_m \ge 1) \ge \frac{1}{1 + (\sum_{k=n}^{m} P(A_k))^{-1}}$
- (b) Using (a) show that if $\sum_{k=1}^{\infty} P(A_k) = \infty$ then $P(A_n \text{ occur i.o.}) = 1$